

High Productivity Computing Systems

Robert Graybill DARPA/IPTO

March 2003

High Productivity Computing Systems

Goal:

Provide a new generation of economically viable high productivity computing systems for the national security and industrial user community (2007 – 2010)

Impact:

- Performance (time-to-solution): speedup critical national security applications by a factor of 10X to 40X
- Programmability (time-for-idea-to-first-solution): reduce cost and time of developing application solutions
- Portability (transparency): insulate research and operational application software from system
- Robustness (reliability): apply all known techniques to protect against outside attacks, hardware faults, & programming errors

HPCS Program Focus Areas

Analysis & Assessment

Applications:

Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant modeling and biotechnology

Fill the Critical Technology and Capability Gap

Today (late 80's HPC technology).....to.....Future (Quantum/Bio Computing)

Vision: Focus on the Lost Dimension of HPC "User & System Efficiency and Productivity"

Moore's Law
Double Raw
Performance every
18 Months

New Goal: Double Value Every 18 Months

Fill the high-end computing technology and capability gap for critical national security missions

HPCS

HPCS Technical Considerations

Communication Programming Models

Shared-Memory Multi-Processing

Distributed-Memory Multi-Computing "MPI"

Architecture Types

HPCS Focus Tailorable Balanced Solutions

Single Point Design Solutions are no longer Acceptable

HPCS Program Phases I - III

HPCS Phase I Industry Teams

Industry:

Cray, Inc. (Burton Smith)

Hewlett-Packard Company (Kathy Wheeler)

International Business Machines Corporation (Mootaz Elnozahy)

Silicon Graphics, Inc. (Steve Miller)

Sun Microsystems, Inc. (Jeff Rulifson)

Application Analysis/Performance Assessment Team:

MIT Lincoln Laboratory

Phase II Milestones

HPCS

Application Analysis/ Performance Assessment

Activity Flow

Application Focus Selection

DDR&E Study

- Operational weather and ocean forecasting
- Planning activities for dispersion of airborne/waterborne contaminants
- Cryptanalysis
- Intelligence, surveillance, reconnaissance
- Improved armor design
- Engineering design of large aircraft, ship and structures
- National missile defense
- Test and evaluation
- Weapon (warheads and penetrators)
- Survivability/stealth design

IHEC Study

- Comprehensive Aerospace Vehicle Design
- Signals Intelligence (Crypt)
- Signals Intelligence (Graph)
- Operational Weather/Ocean Forecasting
- Stealthy Ship Design
- Nuclear Weapons Stockpile Stewardship
- Signal and Image Processing
- Army Future Combat Systems
- Electromagnetic Weapons Development
- Geospatial Intelligence
- Threat Weapon Systems
 Characterization

Biomedical Computing Requirements

TeraOps

Computational Biology: from Sequence to Systems

Trivially Parallel Assemble Genome Find the Genes Annotate the Genes Map Genes to Proteins 10 **Protein-Protein Interactions Pathways: Normal & Aberrant** 100 **Protein Functions in Pathways** 1000 **Protein Structure Peta-Scale Identify Drug Targets** Computing **Cellular Response** Tissue, Organ &

Whole Body Response

Sequence Genome

Slide provided by IDC

Biomedical Application and Kernels

	Kernels	Application	Source	Today
BioCatalysis	Ab Initio Quantum Chemistry	GAMESS	DoD HPCMP TI-03	TeraOp/s sustained
	Quantum Chemistry	GAUSSIAN	www.gaussian.com/	TeraOp/s sustained
	Quantum Mechanics	NWChem	PNNL	TeraOp/s sustained
Quantum and MM	Macromolecular Dynamics	CHARM	http://yuri.harvard.edu/	10 TeraOp/s sustained
	Energy Minimization			
	MonteCarlo Simulation			
	Molecular Mechanical Field Force	AMBER	http://www.amber.ucsf.edu/	10 TeraOp/s sustained
m-Array 8000 Genes	Clustering	CLUSTALW	http://bimas.dcrt.nih.gov/sw.html	200 GigaOps/s sustained
Multiple Alignment Phylogenetics	Pattern Matching	NONMEM	http://www.globomaxservice.com/ products/nonmem.html	100 GigaOps/s sustained
	Pattern Matching	PHYLIP	http://evolution.genetics.washington.edu/ phylip.html	100 GigaOps/s sustained
	Pattern Matching	FASTme	http://www.ncbi.nlm.nih.gov/ CBBresearch/Desper/FastME.html	100 GigaOps/s sustained
Whole Genome Analysis	Sequence Comparison	Needleman-Wunsch	http://www.med.nyu.edu/ rcr/rcr/course/sim-sw.html	100 TeraOps/s sustained
	Sequence Comparison	FASTA	http://www.ebi.ac.uk/fasta33/	100 TeraOps/s sustained
	Sequence Comparison	HMMR	http://hmmer.wustl.edu/	100 TeraOps/s sustained
	Sequence Comparison	GENSCAN	http://genes.mit.edu/GENSCANinfo.html	100 TeraOps/s sustained
Systems Biology	Functional Genomics		http://genomics.lbl.gov/~aparkin/ Group/Codebase.html	
	Biological Pathway Analysis			
	Complex Systems Simulation and Analysis		http://ecell.sourceforge.net/	
	Partial Differential Equation Solver		http://www.nrcam.uchc.edu/	
	Ordinary Differential Equation Solver			
Digital Imaging	Marching Cubes		Paper & Pencil for Kernels	
	Triangle Reduction		Paper & Pencil for Kernels	
	Triangle Smoothing		Paper & Pencil for Kernels	
	Noise Reduction		Paper & Pencil for Kernels	
	Artifact Removal		Paper & Pencil for Kernels	

RBG 10/9/2002 11

HPCS Mission Work Flows

HPCS Productivity Factors: Performance, Programmability, Portability, and Robustness are very closely coupled with each work flow

Workflow Priorities & Goals

	Implicit Productivity Factors				
Workflow	Perf.	Prog.	Port.	Robust.	
Researcher		High			
Enterprise	High	High	High	High	
Production	High			High	

- Workflows define scope of customer priorities
- Activity and Purpose benchmarks will be used to measure Productivity
- HPCS Goal is to add value to each workflow
 - Increase productivity while increasing problem size

13

HPCS Productivity Framework

Implicit HPCS Productivity Factors:
Performance, Programmability, Portability, and Robustness

Benchmark Relationships

Fixed Size

Scalable

Activity Based

(Well Suited for

Execution Measurement)

NAS Parallel

HPCS Suite

SPEC

LINPACK

LINPEAK

NAS Parallel

Streams, GUPS

Purpose **Based**

(Ideal for

Development Measurement)

NSA Suites

Some RFP Suites

HPCS Suite (Planned)

HPCS Focus

Phase I – Scope Benchmarks Phase II – Activity and Purpose Benchmarks

HPC Community Reactions

DoD User Community

- Active participation in reviews
- Providing challenge problems
- Linking with internal efforts
- Providing funding synergism

Industry

- Finally an opportunity to develop a non evolutionary vision
- Active program support (technical, personnel, vision)
- Direct impact to future product roadmaps

University

- Active support for Phase 1 (2X growth from proposals)
- Extended Community
 - HPCS strategy embedded in Congressional IHEC Report

Productivity a new HPC Sub-discipline

